Search for long-duration GWs from glitching pulsars during LIGO-Virgo third observing run

Luana Modafferi, Joan Moragues

(Universitat de les Illes Balears) for the LIGO Scientific Collaboration, Virgo Collaboration and KAGRA Collaboration 11th Iberian GWs meeting, June 9-11 2021

Universitat

de les Illes Balears

<u>l.modafferi@uib.es</u> DCC: G2100955

Different Sources of Gravitational Waves

First detection of gravitational waves from a **BBH coalescence** in 2015 Gravitational waves from **spinning neutron stars**: not yet detected

Gravitational Waves from Pulsars

Narrow-band Searches

2 main pipelines:

• 5-vector search (used for O2) Abbott et at. 2019 [PRD99,122002]

• search using \mathcal{F} -stat (new!)

Our contribution to the LVC:

search for *long-duration transient continuous waves*, with duration O(hours-months) i.e. in the gap between the burst-like O(ms) and truly continuous $O(\infty)$ waves

Astrophysical Motivation: Glitching Neutron Stars

- EM data: radio and X-ray observations from Jodrell, the ATNF, NICER, UTMOST
- **GW data**: full **3rd observing run** from the 3 detectors (2 Advanced **LIGO** detectors and **Virgo**), from April 2019 to March 2020, with a break in October 2019

Theory of Pulsar Glitches: Two-Fluid Model

- observed pulses with angular velocity Ω, associated to NS magnetic field and which gradually decreases
- interior neutrons are **superfluid**, forming an independent component that rotates at angular velocity Ω_s
- weak coupling between the two components \rightarrow growing "lag" $\Delta \Omega = \Omega_s - \Omega$
- when lag reaches a critical value, some sort of instability occurs
- transfer of angular momentum from superfluid to normal fluid
 → spin-up (i.e. glitch)
- change in quadrupole moment can cause GWs⁶

Previous GW Glitch Searches

- search for short-duration transients (bursts) from Vela's glitch in 2006 Abadie et al. 2010
- search for *long-duration transients* from Vela & Crab glitches during O2 Keitel et al. 2019

Transient Continuous Waves Model Prix et al. (20

Similar to CW standard model, but in addition to the **phase** and **amplitude parameters:**

$$egin{aligned} \lambda &= \{lpha, \delta, f, \dot{f}, \ddot{f} \dots \} \ \mathcal{A} &= \{h_0, \cos \iota, \psi, \phi_o\} \end{aligned}$$

we consider a set of transient parameters:

How Do We Detect These Signals? Prix et al. (2011)

Based on observed data ${f x}$, we want to decide between 2 hypotheses:

 $egin{aligned} \mathcal{H}_{ ext{G}} &: \mathbf{x}(t) = \mathbf{n}(t) & ext{data contains} \ \mathcal{H}_{ ext{S}} &: \mathbf{x}(t) = \mathbf{n}(t) + \mathbf{h}(t; heta) \end{aligned}$ data contains only gaussian noise data contains signal too! $P(\mathbf{x}|\mathcal{H}_{\mathrm{S}}, \theta)$ $\blacktriangleright \, \ln \mathcal{L}_{\mathrm{ML}}(\mathbf{x}) = \max_{\{\lambda,\mathcal{T}\}} \mathcal{F}(\mathbf{x};\lambda,\mathcal{T}) \,)$ define the $P(\mathbf{x}|\mathcal{H}_{\mathrm{G}})$ likelihoods for maximize the each hypothesis... likelihood ratio and their ratio over the The " \mathcal{F} - statistic" parameters θ

Search Method

- select target of known sky coordinates
- place a **template grid** in $f, \dot{f}, \ddot{f}, \dots$ space
- compute \mathcal{F} -statistic map for each point in the space: $\mathcal{F}_{mn} = \mathcal{F}(\lambda, t_{0m}, \tau_n)$
- search for **peaks** over the $(f, \dot{f}, \ddot{f}, \mathcal{T})$ space
- get **detection threshold** from the Gumbel distribution, the expected distribution in the absence of a signal:

used in Generalized Extreme Value Theory to model the **distribution of the maximum** of a number of samples: exactly what we need!

$$p(\max_{_{\{\lambda,\mathcal{T}\}}}\mathcal{F};\mu,eta)=rac{1}{eta}e^{-(z+e^{-z})}$$

where $z = rac{\max \mathcal{F} - \mu}{eta}$

Tenorio, Keitel & Sintes, 2021 Tenorio, Modafferi, Keitel & Sintes, in prep

Search Setup

$$(f,\dot{f},\ddot{f}\dots)$$

- narrow-band approach: allow mismatch between the true GW and its nominal value
- frequency band Δf = maximum between glitch size, frequency uncertainty and $f \cdot 10^{-3}$
- **template bank**: square grid in $(f, \dot{f}, \ddot{f}...)$ where the number of spindowns depends on the ephemerides

$$egin{array}{c} \mathcal{T} = t_0, au \end{array}$$

- search for transients starting in a window centered at the glitch time with width ΔT_{alitch}
- duration of transients up to 4 months
- window function: rectangular

Search Procedure

Upper Limits Procedure (example from O2)

Software injections of simulated signals at different durations τ

Acknowledgements

Thank you for listening!

<u>l.modafferi@uib.es</u>

LM and JM are supported by the Universitat de les Illes Balears; European Union FEDER funds; the Spanish Ministry of Science and Innovation and the Spanish Agencia Estatal de Investigación grants PID2019-106416GB-I00/AEI/10.13039/501100011033, RED2018-102661-T, RED2018-102573-E; the Comunitat Autonoma de les Illes Balears through the Direcció General de Política Universitaria i Recerca with funds from the Tourist Stay Tax Law ITS 2017-006 (PRD2018/24); the Vicepresidència i Conselleria d'Innovació, Recerca i Turisme del Govern de les Illes Balears; the Generalitat Valenciana (PROMETEO/2019/071); and EU COST Actions CA18108, CA17137, CA16214, and CA16104.

Unión Europea

Fondo Europeo de Desarrollo Regional "Una manera de hacer Europa"

14

Rectangular vs Exponential Window

Timing results for both rectangular and exponential transient windows, from CPU and GPU implementations on various devices.

Keitel & Ashton, 2018